Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-infinite Schubert varieties and quantum K-theory of flag manifolds (1111.2266v5)

Published 9 Nov 2011 in math.AG, hep-th, math.QA, and math.RT

Abstract: Let g be a semi-simple Lie algebra. In this paper we study the spaces of based quasi-maps from the projective line P1 to the flag variety of g (it is well-known that their singularities are supposed to model the singularities of the so called semi-infinite Schubert varieties which are hard to define directly). In the first part of the paper we show that the above spaces are normal and in the case when g is simply laced they are also Gorenstein and have rational singularities. In the second part of the paper we compute the character of the ring of functions on the above spaces; in view of the above results this computation can be thought of as a computation of the (equivariant) K-theoretic J-function of the flag variety of g. We show that when g is simply laced the above characters satisfy the "fermionic recursion" version of the difference quantum Toda lattice (due to B.Feigin, E.Feigin, M.Jimbo, T.Miwa and E.Mukhin). As a byproduct we show that the equivariant K-theoretic J-function of the flag variety of a simply laced Lie algebra g is the universal eigen-function of the difference quantum Toda lattice, thus proving a conjecture of Givental and Lee. Some modification of this result is also shown to hold for non-simply laced g. We also discuss an extension of the above results to the case when g is an affine Lie algebra (this extension is conjectural except when g=sl(N)).

Summary

We haven't generated a summary for this paper yet.