Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Multiplicative Methods for Implementing Machine Learning Algorithms on MapReduce (1111.2111v2)

Published 9 Nov 2011 in cs.DS and cs.LG

Abstract: In this paper we introduce a generic model for multiplicative algorithms which is suitable for the MapReduce parallel programming paradigm. We implement three typical machine learning algorithms to demonstrate how similarity comparison, gradient descent, power method and other classic learning techniques fit this model well. Two versions of large-scale matrix multiplication are discussed in this paper, and different methods are developed for both cases with regard to their unique computational characteristics and problem settings. In contrast to earlier research, we focus on fundamental linear algebra techniques that establish a generic approach for a range of algorithms, rather than specific ways of scaling up algorithms one at a time. Experiments show promising results when evaluated on both speedup and accuracy. Compared with a standard implementation with computational complexity $O(m3)$ in the worst case, the large-scale matrix multiplication experiments prove our design is considerably more efficient and maintains a good speedup as the number of cores increases. Algorithm-specific experiments also produce encouraging results on runtime performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.