Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Flow-dependent Quadratic Steiner Tree Problem in the Euclidean Plane (1111.2109v1)

Published 9 Nov 2011 in math.MG, cs.DS, and math.OC

Abstract: We introduce a flow-dependent version of the quadratic Steiner tree problem in the plane. An instance of the problem on a set of embedded sources and a sink asks for a directed tree $T$ spanning these nodes and a bounded number of Steiner points, such that $\displaystyle\sum_{e \in E(T)}f(e)|e|2$ is a minimum, where $f(e)$ is the flow on edge $e$. The edges are uncapacitated and the flows are determined additively, i.e., the flow on an edge leaving a node $u$ will be the sum of the flows on all edges entering $u$. Our motivation for studying this problem is its utility as a model for relay augmentation of wireless sensor networks. In these scenarios one seeks to optimise power consumption -- which is predominantly due to communication and, in free space, is proportional to the square of transmission distance -- in the network by introducing additional relays. We prove several geometric and combinatorial results on the structure of optimal and locally optimal solution-trees (under various strategies for bounding the number of Steiner points) and describe a geometric linear-time algorithm for constructing such trees with known topologies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.