2000 character limit reached
Generalised Clark-Ocone formulae for differential forms (1111.1194v3)
Published 4 Nov 2011 in math.PR
Abstract: We generalise the Clark-Ocone formula for functions to give analogous representations for differential forms on the classical Wiener space. Such formulae provide explicit expressions for closed and co-closed differential forms and, as a by-product, a new proof of the triviality of the L2 de Rham cohomology groups on the Wiener space, alternative to Shigekawa's approach [16] and the chaos-theoretic version [18]. This new approach has the potential of carrying over to curved path spaces, as indicated by the vanishing result for harmonic one-forms in [6]. For the flat path group, the generalised Clark-Ocone formulae can be proved directly using the It^o map.