Spectral and phase space analysis of the linearized non-cutoff Kac collision operator
Abstract: The non-cutoff Kac operator is a kinetic model for the non-cutoff radially symmetric Boltzmann operator. For Maxwellian molecules, the linearization of the non-cutoff Kac operator around a Maxwellian distribution is shown to be a function of the harmonic oscillator, to be diagonal in the Hermite basis and to be essentially a fractional power of the harmonic oscillator. This linearized operator is a pseudodifferential operator, and we provide a complete asymptotic expansion for its symbol in a class enjoying a nice symbolic calculus. Related results for the linearized non-cutoff radially symmetric Boltzmann operator are also proven.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.