Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anonymous Meeting in Networks (1111.0321v3)

Published 1 Nov 2011 in cs.DS and cs.DC

Abstract: A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node. Agents are anonymous (identical), execute the same deterministic algorithm and move in synchronous rounds along links of the network. Which configurations are gatherable and how to gather all of them deterministically by the same algorithm? We give a complete solution of this gathering problem in arbitrary networks. We characterize all gatherable configurations and give two universal deterministic gathering algorithms, i.e., algorithms that gather all gatherable configurations. The first algorithm works under the assumption that an upper bound n on the size of the network is known. In this case our algorithm guarantees gathering with detection, i.e., the existence of a round for any gatherable configuration, such that all agents are at the same node and all declare that gathering is accomplished. If no upper bound on the size of the network is known, we show that a universal algorithm for gathering with detection does not exist. Hence, for this harder scenario, we construct a second universal gathering algorithm, which guarantees that, for any gatherable configuration, all agents eventually get to one node and stop, although they cannot tell if gathering is over. The time of the first algorithm is polynomial in the upper bound n on the size of the network, and the time of the second algorithm is polynomial in the (unknown) size itself. Our results have an important consequence for the leader election problem for anonymous agents in arbitrary graphs. For anonymous agents in graphs, leader election turns out to be equivalent to gathering with detection. Hence, as a by-product, we obtain a complete solution of the leader election problem for anonymous agents in arbitrary graphs.

Citations (41)

Summary

We haven't generated a summary for this paper yet.