Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Layer Local Graph Words for Object Recognition (1110.6895v1)

Published 31 Oct 2011 in cs.MM

Abstract: In this paper, we propose a new multi-layer structural approach for the task of object based image retrieval. In our work we tackle the problem of structural organization of local features. The structural features we propose are nested multi-layered local graphs built upon sets of SURF feature points with Delaunay triangulation. A Bag-of-Visual-Words (BoVW) framework is applied on these graphs, giving birth to a Bag-of-Graph-Words representation. The multi-layer nature of the descriptors consists in scaling from trivial Delaunay graphs - isolated feature points - by increasing the number of nodes layer by layer up to graphs with maximal number of nodes. For each layer of graphs its own visual dictionary is built. The experiments conducted on the SIVAL and Caltech-101 data sets reveal that the graph features at different layers exhibit complementary performances on the same content and perform better than baseline BoVW approach. The combination of all existing layers, yields significant improvement of the object recognition performance compared to single level approaches.

Citations (13)

Summary

We haven't generated a summary for this paper yet.