Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grassmann secants, identifiability, and linear systems of tensors (1110.6367v3)

Published 28 Oct 2011 in math.AG and math.AC

Abstract: For any irreducible non-degenerate variety $X\subset \mathbb{P}r$, we give a criterion for the $(k,s)$-identifiability of $X$. If $k\leq s-1 <r$, then the $(k,s)$-identifiability holds for $X$ if and only if the $s$-identifiability holds for the Segre product $Seg(\mathbb{P}k\times X)$. Moreover, if the $s$-th secant variety of $X$ is not defective and it does not fill the ambient space, then we can produce a family of pairs $(k,s)$ for which the $(k,s)$-identifiability holds for $X$.

Summary

We haven't generated a summary for this paper yet.