Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inducing Probabilistic Programs by Bayesian Program Merging (1110.5667v1)

Published 25 Oct 2011 in cs.AI and cs.LG

Abstract: This report outlines an approach to learning generative models from data. We express models as probabilistic programs, which allows us to capture abstract patterns within the examples. By choosing our language for programs to be an extension of the algebraic data type of the examples, we can begin with a program that generates all and only the examples. We then introduce greater abstraction, and hence generalization, incrementally to the extent that it improves the posterior probability of the examples given the program. Motivated by previous approaches to model merging and program induction, we search for such explanatory abstractions using program transformations. We consider two types of transformation: Abstraction merges common subexpressions within a program into new functions (a form of anti-unification). Deargumentation simplifies functions by reducing the number of arguments. We demonstrate that this approach finds key patterns in the domain of nested lists, including parameterized sub-functions and stochastic recursion.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com