Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Version of Geiringer-like Theorem for Decision Making in the Environments with Randomness and Incomplete Information (1110.4657v1)

Published 20 Oct 2011 in cs.AI and cs.DM

Abstract: Purpose: In recent years Monte-Carlo sampling methods, such as Monte Carlo tree search, have achieved tremendous success in model free reinforcement learning. A combination of the so called upper confidence bounds policy to preserve the "exploration vs. exploitation" balance to select actions for sample evaluations together with massive computing power to store and to update dynamically a rather large pre-evaluated game tree lead to the development of software that has beaten the top human player in the game of Go on a 9 by 9 board. Much effort in the current research is devoted to widening the range of applicability of the Monte-Carlo sampling methodology to partially observable Markov decision processes with non-immediate payoffs. The main challenge introduced by randomness and incomplete information is to deal with the action evaluation at the chance nodes due to drastic differences in the possible payoffs the same action could lead to. The aim of this article is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte-Carlo sampling algorithms that provably increase the AI potential. Due to space limitations the actual algorithms themselves will be presented in the sequel papers, however, the current paper provides a solid mathematical foundation for the development of such algorithms and explains why they are so promising.

Citations (3)

Summary

We haven't generated a summary for this paper yet.