Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Clustering Approximation Algorithm Using One Pass Black Box Sampling (1110.3563v1)

Published 17 Oct 2011 in cs.SI and physics.soc-ph

Abstract: Finding a good clustering of vertices in a network, where vertices in the same cluster are more tightly connected than those in different clusters, is a useful, important, and well-studied task. Many clustering algorithms scale well, however they are not designed to operate upon internet-scale networks with billions of nodes or more. We study one of the fastest and most memory efficient algorithms possible - clustering based on the connected components in a random edge-induced subgraph. When defining the cost of a clustering to be its distance from such a random clustering, we show that this surprisingly simple algorithm gives a solution that is within an expected factor of two or three of optimal with either of two natural distance functions. In fact, this approximation guarantee works for any problem where there is a probability distribution on clusterings. We then examine the behavior of this algorithm in the context of social network trust inference.

Summary

We haven't generated a summary for this paper yet.