2000 character limit reached
One-dimensional Chern-Simons theory and the $\hat{A}$ genus (1110.3533v3)
Published 16 Oct 2011 in math.QA and math.AT
Abstract: We construct a Chern-Simons gauge theory for dg Lie and L-infinity algebras on any one-dimensional manifold and quantize this theory using the Batalin-Vilkovisky formalism and Costello's renormalization techniques. Koszul duality and derived geometry allow us to encode topological quantum mechanics, a nonlinear sigma model of maps from a 1-manifold into a cotangent bundle T*X, as such a Chern-Simons theory. Our main result is that the partition function of this theory is naturally identified with the A-genus of X. From the perspective of derived geometry, our quantization construct a volume form on the derived loop space which can be identified with the A-class.