Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Image Analysis by L1-Norm Semi-supervised Learning (1110.3109v2)

Published 14 Oct 2011 in cs.CV and cs.LG

Abstract: This paper presents a novel L1-norm semi-supervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as an L1-norm linear reconstruction problem which can be effectively solved with sparse coding. By working with only a small subset of eigenvectors, we further develop a fast sparse coding algorithm for our L1-norm semi-supervised learning. Due to the sparsity induced by sparse coding, the proposed algorithm can deal with the noise in the data to some extent and thus has important applications to robust image analysis, such as noise-robust image classification and noise reduction for visual and textual bag-of-words (BOW) models. In particular, this paper is the first attempt to obtain robust image representation by sparse co-refinement of visual and textual BOW models. The experimental results have shown the promising performance of the proposed algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhiwu Lu (51 papers)
  2. Yuxin Peng (65 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.