Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing perfection is hard (1110.2828v1)

Published 13 Oct 2011 in math.CO, cs.DM, and cs.DS

Abstract: A graph property P is strongly testable if for every fixed \epsilon>0 there is a one-sided \epsilon-tester for P whose query complexity is bounded by a function of \epsilon. In classifying the strongly testable graph properties, the first author and Shapira showed that any hereditary graph property (such as P the family of perfect graphs) is strongly testable. A property is easily testable if it is strongly testable with query complexity bounded by a polynomial function of \epsilon{-1}, and otherwise it is hard. One of our main results shows that testing perfectness is hard. The proof shows that testing perfectness is at least as hard as testing triangle-freeness, which is hard. On the other hand, we show that induced P_3-freeness is easily testable. This settles one of the two exceptional graphs, the other being C_4 (and its complement), left open in the characterization by the first author and Shapira of graphs H for which induced H-freeness is easily testable.

Citations (4)

Summary

We haven't generated a summary for this paper yet.