Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universality of covariance matrices (1110.2501v7)

Published 11 Oct 2011 in math.PR, math.ST, and stat.TH

Abstract: In this paper we prove the universality of covariance matrices of the form $H_{N\times N}={X}{\dagger}X$ where $X$ is an ${M\times N}$ rectangular matrix with independent real valued entries $x_{ij}$ satisfying $\mathbb{E}x_{ij}=0$ and $\mathbb{E}x2_{ij}={\frac{1}{M}}$, $N$, $M\to \infty$. Furthermore it is assumed that these entries have sub-exponential tails or sufficiently high number of moments. We will study the asymptotics in the regime $N/M=d_N\in(0,\infty),\lim_{N\to\infty}d_N\neq0,\infty$. Our main result is the edge universality of the sample covariance matrix at both edges of the spectrum. In the case $\lim_{N\to\infty}d_N=1$, we only focus on the largest eigenvalue. Our proof is based on a novel version of the Green function comparison theorem for data matrices with dependent entries. En route to proving edge universality, we establish that the Stieltjes transform of the empirical eigenvalue distribution of $H$ is given by the Marcenko-Pastur law uniformly up to the edges of the spectrum with an error of order $(N\eta){-1}$ where $\eta$ is the imaginary part of the spectral parameter in the Stieltjes transform. Combining these results with existing techniques we also show bulk universality of covariance matrices. All our results hold for both real and complex valued entries.

Summary

We haven't generated a summary for this paper yet.