2000 character limit reached
Further hardness results on the rainbow vertex-connection number of graphs (1110.1915v1)
Published 10 Oct 2011 in math.CO and cs.CC
Abstract: A vertex-colored graph $G$ is {\it rainbow vertex-connected} if any pair of vertices in $G$ are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The {\it rainbow vertex-connection number} of a connected graph $G$, denoted by $rvc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow vertex-connected. In a previous paper we showed that it is NP-Complete to decide whether a given graph $G$ has $rvc(G)=2$. In this paper we show that for every integer $k\geq 2$, deciding whether $rvc(G)\leq k$ is NP-Hard. We also show that for any fixed integer $k\geq 2$, this problem belongs to NP-class, and so it becomes NP-Complete.