Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of the Error Density in a Semiparametric Transformation Model (1110.1846v1)

Published 9 Oct 2011 in math.ST and stat.TH

Abstract: Consider the semiparametric transformation model $\Lambda_{\theta_o}(Y)=m(X)+\epsilon$, where $\theta_o$ is an unknown finite dimensional parameter, the functions $\Lambda_{\theta_o}$ and $m$ are smooth, $\epsilon$ is independent of $X$, and $\esp(\epsilon)=0$. We propose a kernel-type estimator of the density of the error $\epsilon$, and prove its asymptotic normality. The estimated errors, which lie at the basis of this estimator, are obtained from a profile likelihood estimator of $\theta_o$ and a nonparametric kernel estimator of $m$. The practical performance of the proposed density estimator is evaluated in a simulation study.

Summary

We haven't generated a summary for this paper yet.