Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive definite matrices and the S-divergence (1110.1773v4)

Published 8 Oct 2011 in math.FA and stat.ML

Abstract: Positive definite matrices abound in a dazzling variety of applications. This ubiquity can be in part attributed to their rich geometric structure: positive definite matrices form a self-dual convex cone whose strict interior is a Riemannian manifold. The manifold view is endowed with a "natural" distance function while the conic view is not. Nevertheless, drawing motivation from the conic view, we introduce the S-Divergence as a "natural" distance-like function on the open cone of positive definite matrices. We motivate the S-divergence via a sequence of results that connect it to the Riemannian distance. In particular, we show that (a) this divergence is the square of a distance; and (b) that it has several geometric properties similar to those of the Riemannian distance, though without being computationally as demanding. The S-divergence is even more intriguing: although nonconvex, we can still compute matrix means and medians using it to global optimality. We complement our results with some numerical experiments illustrating our theorems and our optimization algorithm for computing matrix medians.

Citations (8)

Summary

We haven't generated a summary for this paper yet.