Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Estimators for Variance-Based Device-Free Localization and Tracking (1110.1569v1)

Published 26 Sep 2011 in cs.NI

Abstract: Human motion in the vicinity of a wireless link causes variations in the link received signal strength (RSS). Device-free localization (DFL) systems, such as variance-based radio tomographic imaging (VRTI), use these RSS variations in a static wireless network to detect, locate and track people in the area of the network, even through walls. However, intrinsic motion, such as branches moving in the wind and rotating or vibrating machinery, also causes RSS variations which degrade the performance of a DFL system. In this paper, we propose and evaluate two estimators to reduce the impact of the variations caused by intrinsic motion. One estimator uses subspace decomposition, and the other estimator uses a least squares formulation. Experimental results show that both estimators reduce localization root mean squared error by about 40% compared to VRTI. In addition, the Kalman filter tracking results from both estimators have 97% of errors less than 1.3 m, more than 60% improvement compared to tracking results from VRTI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yang Zhao (382 papers)
  2. Neal Patwari (30 papers)
Citations (95)

Summary

We haven't generated a summary for this paper yet.