Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Second cohomology for finite groups of Lie type (1110.0228v2)

Published 2 Oct 2011 in math.RT and math.GR

Abstract: Let $G$ be a simple, simply-connected algebraic group defined over $\mathbb{F}_p$. Given a power $q = pr$ of $p$, let $G(\mathbb{F}_q) \subset G$ be the subgroup of $\mathbb{F}_q$-rational points. Let $L(\lambda)$ be the simple rational $G$-module of highest weight $\lambda$. In this paper we establish sufficient criteria for the restriction map in second cohomology $H2(G,L(\lambda)) \rightarrow H2(G(\mathbb{F}_q),L(\lambda))$ to be an isomorphism. In particular, the restriction map is an isomorphism under very mild conditions on $p$ and $q$ provided $\lambda$ is less than or equal to a fundamental dominant weight. Even when the restriction map is not an isomorphism, we are often able to describe $H2(G(\mathbb{F}_q),L(\lambda))$ in terms of rational cohomology for $G$. We apply our techniques to compute $H2(G(\mathbb{F}_q),L(\lambda))$ in a wide range of cases, and obtain new examples of nonzero second cohomology for finite groups of Lie type.

Citations (8)

Summary

We haven't generated a summary for this paper yet.