Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitive Principles in Robust Multimodal Interpretation (1109.6361v1)

Published 28 Sep 2011 in cs.AI

Abstract: Multimodal conversational interfaces provide a natural means for users to communicate with computer systems through multiple modalities such as speech and gesture. To build effective multimodal interfaces, automated interpretation of user multimodal inputs is important. Inspired by the previous investigation on cognitive status in multimodal human machine interaction, we have developed a greedy algorithm for interpreting user referring expressions (i.e., multimodal reference resolution). This algorithm incorporates the cognitive principles of Conversational Implicature and Givenness Hierarchy and applies constraints from various sources (e.g., temporal, semantic, and contextual) to resolve references. Our empirical results have shown the advantage of this algorithm in efficiently resolving a variety of user references. Because of its simplicity and generality, this approach has the potential to improve the robustness of multimodal input interpretation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. J. Y. Chai (6 papers)
  2. Z. Prasov (1 paper)
  3. S. Qu (141 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.