Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence for stochastic difference equations: A mini-review (1109.5967v1)

Published 27 Sep 2011 in math.DS, math.PR, and q-bio.PE

Abstract: Understanding under what conditions populations, whether they be plants, animals, or viral particles, persist is an issue of theoretical and practical importance in population biology. Both biotic interactions and environmental fluctuations are key factors that can facilitate or disrupt persistence. One approach to examining the interplay between these deterministic and stochastic forces is the construction and analysis of stochastic difference equations $X_{t+1}=F(X_t,\xi_{t+1})$ where $X_t \in \Rk$ represents the state of the populations and $\xi_1,\xi_2,...$ is a sequence of random variables representing environmental stochasticity. In the analysis of these stochastic models, many theoretical population biologists are interested in whether the models are bounded and persistent. Here, boundedness asserts that asymptotically $X_t$ tends to remain in compact sets. In contrast, persistence requires that $X_t$ tends to be "repelled" by some "extinction set" $S_0\subset \Rk$. Here, results on both of these proprieties are reviewed for single species, multiple species, and structured population models. The results are illustrated with applications to stochastic versions of the Hassell and Ricker single species models, Ricker, Beverton-Holt, lottery models of competition, and lottery models of rock-paper-scissor games. A variety of conjectures and suggestions for future research are presented.

Summary

We haven't generated a summary for this paper yet.