Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Ruan's Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds (1109.5923v4)

Published 27 Sep 2011 in math.KT

Abstract: We give formulae for the Chen-Ruan orbifold cohomology for the orbifolds given by a Bianchi group acting on complex hyperbolic 3-space. The Bianchi groups are the arithmetic groups PSL_2(A), where A is the ring of integers in an imaginary quadratic number field. The underlying real orbifolds which help us in our study, given by the action of a Bianchi group on real hyperbolic 3-space (which is a model for its classifying space for proper actions), have applications in physics.We then prove that, for any such orbifold, its Chen-Ruan orbifold cohomology ring is isomorphic to the usual cohomology ring of any crepant resolution of its coarse moduli space.By vanishing of the quantum corrections, we show that this result fits in with Ruan's Cohomological Crepant Resolution Conjecture.

Summary

We haven't generated a summary for this paper yet.