Papers
Topics
Authors
Recent
2000 character limit reached

Singular gradient flow of the distance function and homotopy equivalence

Published 25 Sep 2011 in math.AP, cs.SY, math.DG, and math.OC | (1109.5375v1)

Abstract: It is a generally shared opinion that significant information about the topology of a bounded domain $\Omega $ of a riemannian manifold $M$ is encoded into the properties of the distance, $d_{\partial\Omega}$, %, $d:\Omega\rightarrow [0,\infty [$, from the boundary of $\Omega$. To confirm such an idea we propose an approach based on the invariance of the singular set of the distance function with respect to the generalized gradient flow of of $d_{\partial\Omega}$. As an application, we deduce that such a singular set has the same homotopy type as $\Omega$.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.