2000 character limit reached
A stable infinity-category of Lagrangian cobordisms (1109.4835v3)
Published 22 Sep 2011 in math.SG
Abstract: Given an exact symplectic manifold M and a support Lagrangian \Lambda, we construct an infinity-category Lag, which we conjecture to be equivalent (after specialization of the coefficients) to the partially wrapped Fukaya category of M relative to \Lambda. Roughly speaking, the objects of Lag are Lagrangian branes inside of M x T*(Rn), for large n, and the morphisms are Lagrangian cobordisms that are non-characteristic with respect to \Lambda. The main theorem of this paper is that Lag is a stable infinity-category, so that its homotopy category is triangulated, with mapping cones given by an elementary construction. In particular, its shift functor is equivalent to the familiar shift of grading for Lagrangian branes.