Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Some Properties of Squeezing Functions of Bounded Domains (1109.3920v1)

Published 19 Sep 2011 in math.CV

Abstract: The main purpose of the present paper is to introduce the notion of squeezing functions of bounded domains and study some properties of them. The relation to geometric and analytic structures of bounded domains will be investigated. Existence of related extremal maps and continuity of squeezing functions are proved. Holomorphic homogeneous regular domains are exactly domains whose squeezing functions have positive lower bounds. Completeness of certain intrinsic metrics and pseudoconvexity of holomorphic homogeneous regular domains are proved by alternative method. In dimension one case, we get a neat description of boundary behavior of squeezing functions of finitely connected planar domains. This leads to a necessary and sufficient conditions for a finitely connected planar domain to be a holomorphic homogeneous regular domain. Consequently, we can recover some important results in complex analysis. For annuli, we obtain some interesting properties of their squeezing functions. We finally exhibit some examples of bounded domains whose squeezing functions can be given explicitly.

Summary

We haven't generated a summary for this paper yet.