Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysing properties of the C. Elegans neural network: mathematically modeling a biological system (1109.3888v1)

Published 18 Sep 2011 in q-bio.NC, physics.bio-ph, and q-bio.QM

Abstract: The brain is one of the most studied and highly complex systems in the biological world. It is the information center behind all vertebrate and most invertebrate life, and thus has become a major focus in current research. While many of these studies have concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons). A better understanding of the structural aspects of the brain should elucidate some of its functional properties. In this paper we analyze the brain of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian matrix of the 279-neuron "giant component" of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot (in eigenfunction coordinates) both 2 and 3 dimensional visualizations of the neural network. Further analysis examines the small-world properties of the system, including average path length and clustering coefficient. We then test for localization of eigenfunctions, using graph energy and spacial variance. To better understand these results, all of these calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been "rewired" to have small-world properties. This analysis is one of many stepping-stones in the research of neural networks. While many of the structures and functions within the brain are known, understanding how the two interact is also important. A firmer grasp on the structural properties of the neural network is a key step in this process

Summary

We haven't generated a summary for this paper yet.