Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Operator-Fractal (1109.3168v2)

Published 14 Sep 2011 in math.OA and math.SP

Abstract: Certain Bernoulli convolution measures (\mu) are known to be spectral. Recently, much work has concentrated on determining conditions under which orthonormal Fourier bases (i.e. spectral bases) exist. For a fixed measure known to be spectral, the orthonormal basis need not be unique; indeed, there are often families of such spectral bases. Let \lambda = 1/(2n) for a natural number n and consider the Bernoulli measure (\mu) with scale factor \lambda. It is known that L2(\mu) has a Fourier basis. We first show that there are Cuntz operators acting on this Hilbert space which create an orthogonal decomposition, thereby offering powerful algorithms for computations for Fourier expansions. When L2(\mu) has more than one Fourier basis, there are natural unitary operators U, indexed by a subset of odd scaling factors p; each U is defined by mapping one ONB to another. We show that the unitary operator U can also be orthogonally decomposed according to the Cuntz relations. Moreover, this operator-fractal U exhibits its own self-similarity.

Summary

We haven't generated a summary for this paper yet.