Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More Compact Oracles for Approximate Distances in Planar Graphs (1109.2641v2)

Published 12 Sep 2011 in cs.DS

Abstract: Distance oracles are data structures that provide fast (possibly approximate) answers to shortest-path and distance queries in graphs. The tradeoff between the space requirements and the query time of distance oracles is of particular interest and the main focus of this paper. In FOCS'01, Thorup introduced approximate distance oracles for planar graphs. He proved that, for any eps>0 and for any planar graph on n nodes, there exists a (1+eps)-approximate distance oracle using space O(n eps{-1} log n) such that approximate distance queries can be answered in time O(1/eps). Ten years later, we give the first improvements on the space-querytime tradeoff for planar graphs. * We give the first oracle having a space-time product with subquadratic dependency on 1/eps. For space ~O(n log n) we obtain query time ~O(1/eps) (assuming polynomial edge weights). The space shows a doubly logarithmic dependency on 1/eps only. We believe that the dependency on eps may be almost optimal. * For the case of moderate edge weights (average bounded by polylog(n), which appears to be the case for many real-world road networks), we hit a "sweet spot," improving upon Thorup's oracle both in terms of eps and n. Our oracle uses space ~O(n log log n) and it has query time ~O(log log log n + 1/eps). (Asymptotic notation in this abstract hides low-degree polynomials in log(1/eps) and log*(n).)

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christian Sommer (20 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.