Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moduli of symplectic instanton vector bundles of higher rank on projective space $\mathbb{P}^3$ (1109.2292v1)

Published 11 Sep 2011 in math.AG

Abstract: Symplectic instanton vector bundles on the projective space $\mathbb{P}3$ constitute a natural generalization of mathematical instantons of rank 2. We study the moduli space $I_{n,r}$ of rank-$2r$ symplectic instanton vector bundles on $\mathbb{P}3$ with $r\ge2$ and second Chern class $n\ge r,\ n\equiv r({\rm mod}2)$. We give an explicit construction of an irreducible component $I*_{n,r}$ of this space for each such value of $n$ and show that $I*_{n,r}$ has the expected dimension $4n(r+1)-r(2r+1)$.

Summary

We haven't generated a summary for this paper yet.