Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of nonlinear stochastic partial differential equations in a general ergodic environment (1109.1977v2)

Published 9 Sep 2011 in math.AP

Abstract: In this paper, we show that the concept of sigma-convergence associated to stochastic processes can tackle the homogenization of stochastic partial differential equations. In this regard, the homogenization problem for a stochastic nonlinear partial differential equation is studied. Using some deep compactness results such as the Prokhorov and Skorokhod theorems, we prove that the sequence of solutions of this problem converges in probability towards the solution of an equation of the same type. To proceed with, we use a suitable version of sigma-convergence method, the sigma-convergence for stochastic processes, which takes into account both the deterministic and random behaviours of the solutions of the problem. We apply the homogenization result to some concrete physical situations such as the periodicity, the almost periodicity, the weak almost periodicity, and others.

Summary

We haven't generated a summary for this paper yet.