Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classical Solutions for a nonlinear Fokker-Planck equation arising in Computational Neuroscience (1109.1298v1)

Published 6 Sep 2011 in math.AP

Abstract: In this paper we analyze the global existence of classical solutions to the initial boundary-value problem for a nonlinear parabolic equation describing the collective behavior of an ensemble of neurons. These equations were obtained as a diffusive approximation of the mean-field limit of a stochastic differential equation system. The resulting Fokker-Planck equation presents a nonlinearity in the coefficients depending on the probability flux through the boundary. We show by an appropriate change of variables that this parabolic equation with nonlinear boundary conditions can be transformed into a non standard Stefan-like free boundary problem with a source term given by a delta function. We prove that there are global classical solutions for inhibitory neural networks, while for excitatory networks we give local well-posedness of classical solutions together with a blow up criterium. Finally, we will also study the spectrum for the linear problem corresponding to uncoupled networks and its relation to Poincar\'e inequalities for studying their asymptotic behavior.

Summary

We haven't generated a summary for this paper yet.