Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating 3D Human Shapes from Measurements (1109.1175v2)

Published 6 Sep 2011 in cs.CV and cs.GR

Abstract: The recent advances in 3-D imaging technologies give rise to databases of human shapes, from which statistical shape models can be built. These statistical models represent prior knowledge of the human shape and enable us to solve shape reconstruction problems from partial information. Generating human shape from traditional anthropometric measurements is such a problem, since these 1-D measurements encode 3-D shape information. Combined with a statistical shape model, these easy-to-obtain measurements can be leveraged to create 3D human shapes. However, existing methods limit the creation of the shapes to the space spanned by the database and thus require a large amount of training data. In this paper, we introduce a technique that extrapolates the statistically inferred shape to fit the measurement data using nonlinear optimization. This method ensures that the generated shape is both human-like and satisfies the measurement conditions. We demonstrate the effectiveness of the method and compare it to existing approaches through extensive experiments, using both synthetic data and real human measurements.

Citations (59)

Summary

We haven't generated a summary for this paper yet.