Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two-Step High-Order Compact Scheme for the Laplacian Operator and its Implementation in an Explicit Method for Integrating the Nonlinear Schrödinger Equation (1109.1027v2)

Published 5 Sep 2011 in cs.NA

Abstract: We describe and test an easy-to-implement two-step high-order compact (2SHOC) scheme for the Laplacian operator and its implementation into an explicit finite-difference scheme for simulating the nonlinear Schr\"odinger equation (NLSE). Our method relies on a compact `double-differencing' which is shown to be computationally equivalent to standard fourth-order non-compact schemes. Through numerical simulations of the NLSE using fourth-order Runge-Kutta, we confirm that our scheme shows the desired fourth-order accuracy. A computation and storage requirement comparison is made between the 2SHOC scheme and the non-compact equivalent scheme for both the Laplacian operator alone, as well as when implemented in the NLSE simulations. Stability bounds are also shown in order to get maximum efficiency out of the method. We conclude that the modest increase in storage and computation of the 2SHOC schemes are well worth the advantages of having the schemes compact, and their ease of implementation makes their use very useful for practical implementations.

Citations (11)

Summary

We haven't generated a summary for this paper yet.