Spectral theory of damped quantum chaotic systems
Abstract: We investigate the spectral distribution of the damped wave equation on a compact Riemannian manifold, especially in the case of a metric of negative curvature, for which the geodesic flow is Anosov. The main application is to obtain conditions (in terms of the geodesic flow on $X$ and the damping function) for which the energy of the waves decays exponentially fast, at least for smooth enough initial data. We review various estimates for the high frequency spectrum in terms of dynamically defined quantities, like the value distribution of the time-averaged damping. We also present a new condition for a spectral gap, depending on the set of minimally damped trajectories.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.