Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Grothendieck rings and derived Hall algebras

Published 5 Sep 2011 in math.QA, math.RA, and math.RT | (1109.0862v3)

Abstract: We obtain a presentation of the t-deformed Grothendieck ring of a quantum loop algebra of Dynkin type A, D, E. Specializing t at the the square root of the cardinality of a finite field F, we obtain an isomorphism with the derived Hall algebra of the derived category of a quiver Q of the same Dynkin type. Along the way, we study for each choice of orientation Q a tensor subcategory whose t-deformed Grothendieck ring is isomorphic to the positive part of a quantum enveloping algebra of the same Dynkin type, where the classes of simple objects correspond to Lusztig's dual canonical basis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.