Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual ontology matching based on Wiktionary data accessible via SPARQL endpoint (1109.0732v2)

Published 4 Sep 2011 in cs.IR

Abstract: Interoperability is a feature required by the Semantic Web. It is provided by the ontology matching methods and algorithms. But now ontologies are presented not only in English, but in other languages as well. It is important to use an automatic translation for obtaining correct matching pairs in multilingual ontology matching. The translation into many languages could be based on the Google Translate API, the Wiktionary database, etc. From the point of view of the balance of presence of many languages, of manually crafted translations, of a huge size of a dictionary, the most promising resource is the Wiktionary. It is a collaborative project working on the same principles as the Wikipedia. The parser of the Wiktionary was developed and the machine-readable dictionary was designed. The data of the machine-readable Wiktionary are stored in a relational database, but with the help of D2R server the database is presented as an RDF store. Thus, it is possible to get lexicographic information (definitions, translations, synonyms) from web service using SPARQL requests. In the case study, the problem entity is a task of multilingual ontology matching based on Wiktionary data accessible via SPARQL endpoint. Ontology matching results obtained using Wiktionary were compared with results based on Google Translate API.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Feiyu Lin (2 papers)
  2. Andrew Krizhanovsky (9 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.