Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift (1109.0363v3)

Published 2 Sep 2011 in math.PR

Abstract: We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on $\mathbb{R}d$ to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.

Summary

We haven't generated a summary for this paper yet.