2000 character limit reached
Nonpersistence of resonant caustics in perturbed elliptic billiards (1108.5582v1)
Published 29 Aug 2011 in math.DS and nlin.CD
Abstract: Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics ---the ones whose tangent trajectories are closed polygons--- are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.