Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The genus of a random chord diagram is asymptotically normal (1108.5214v3)

Published 25 Aug 2011 in math.CO and math.GT

Abstract: Let $G_n$ be the genus of a two-dimensional surface obtained by gluing, uniformly at random, the sides of an $n$-gon. Recently Linial and Nowik proved, via an enumerational formula due to Harer and Zagier, that the expected value of $G_n$ is asymptotic to $(n - \ln n)/2$ for $n\to\infty$. We prove a local limit theorem for the distribution of $G_n$, which implies that $G_n$ is asymptotically Gaussian, with mean $(n-\ln n)/2$ and variance $(\ln n)/4$.

Summary

We haven't generated a summary for this paper yet.