Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular Derived Categories of Q-factorial terminalizations and Maximal Modification Algebras (1108.4518v3)

Published 23 Aug 2011 in math.AG and math.AC

Abstract: Let X be a Gorenstein normal 3-fold satisfying (ELF) with local rings which are at worst isolated hypersurface (e.g. terminal) singularities. By using the singular derived category D_{sg}(X) and its idempotent completion, we give necessary and sufficient categorical conditions for X to be Q-factorial and complete locally Q-factorial respectively. We then relate this information to maximal modification algebras(=MMAs), introduced in [IW10], by showing that if an algebra A is derived equivalent to X as above, then X is Q-factorial if and only if A is an MMA. Thus all rings derived equivalent to Q-factorial terminalizations in dimension three are MMAs. As an application, we extend some of the algebraic results in Burban-Iyama-Keller-Reiten [BIKR] and Dao-Huneke [DH] using geometric arguments.

Summary

We haven't generated a summary for this paper yet.