Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Continual Top-k Keyword Search in Relational Databases (1108.4516v1)

Published 23 Aug 2011 in cs.DB and cs.IR

Abstract: Keyword search in relational databases has been widely studied in recent years because it does not require users neither to master a certain structured query language nor to know the complex underlying database schemas. Most of existing methods focus on answering snapshot keyword queries in static databases. In practice, however, databases are updated frequently, and users may have long-term interests on specific topics. To deal with such a situation, it is necessary to build effective and efficient facility in a database system to support continual keyword queries. In this paper, we propose an efficient method for answering continual top-$k$ keyword queries over relational databases. The proposed method is built on an existing scheme of keyword search on relational data streams, but incorporates the ranking mechanisms into the query processing methods and makes two improvements to support efficient top-$k$ keyword search in relational databases. Compared to the existing methods, our method is more efficient both in computing the top-$k$ results in a static database and in maintaining the top-$k$ results when the database continually being updated. Experimental results validate the effectiveness and efficiency of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yanwei Xu (10 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.