Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Sequences with a Perfect Linear Complexity Profile (1108.4224v2)

Published 22 Aug 2011 in cs.IT and math.IT

Abstract: We derive B\'ezout identities for the minimal polynomials of a finite sequence and use them to prove a theorem of Wang and Massey on binary sequences with a perfect linear complexity profile. We give a new proof of Rueppel's conjecture and simplify Dai's original proof. We obtain short proofs of results of Niederreiter relating the linear complexity of a sequence s and K(s), which was defined using continued fractions. We give an upper bound for the sum of the linear complexities of any sequence. This bound is tight for sequences with a perfect linear complexity profile and we apply it to characterise these sequences in two new ways.

Summary

We haven't generated a summary for this paper yet.