Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds (1108.3951v1)

Published 19 Aug 2011 in hep-th, math-ph, and math.MP

Abstract: We present a unified eight-dimensional approach to instanton equations on several seven-dimensional manifolds associated to a six-dimensional homogeneous nearly K\"ahler manifold. The cone over the sine-cone on a nearly K\"ahler manifold has holonomy group Spin(7) and can be foliated by submanifolds with either holonomy group G_2, a nearly parallel G_2-structure or a cocalibrated G_2-structure. We show that there is a G_2-instanton on each of these seven-dimensional manifolds which gives rise to a Spin(7)-instanton in eight dimensions. The well-known octonionic instantons on R7 and R8 are contained in our construction as the special cases of an instanton on the cone and on the cone over the sine-cone, both over the six-sphere, respectively.

Summary

We haven't generated a summary for this paper yet.