Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opposite Antipodal Fundamental Solution of Laplace's Equation in Hyperspherical Geometry (1108.3679v4)

Published 18 Aug 2011 in math-ph, math.AP, math.CA, and math.MP

Abstract: Due to the isotropy of $d$-dimensional hyperspherical space, one expects there to exist a spherically symmetric opposite antipodal fundamental solution for its corresponding Laplace-Beltrami operator. The $R$-radius hypersphere ${\mathbf S}_Rd$ with $R>0$, represents a Riemannian manifold with positive-constant sectional curvature. We obtain a spherically symmetric opposite antipodal fundamental solution of Laplace's equation on this manifold in terms of its geodesic radius. We give several matching expressions for this fundamental solution including a definite integral over reciprocal powers of the trigonometric sine, finite summation expressions over trigonometric functions, Gauss hypergeometric functions, and in terms of the Ferrers function of the second with degree and order given by $d/2-1$ and $1-d/2$ respectively, with real argument $x\in(-1,1)$.

Summary

We haven't generated a summary for this paper yet.