Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Hardy Spaces of Musielak-Orlicz Type and Their Applications (1108.2797v2)

Published 13 Aug 2011 in math.CA and math.FA

Abstract: Let $\phi: \mathbb{R}n\times[0,\fz)\rightarrow[0,\fz)$ be a function such that $\phi(x,\cdot)$ is an Orlicz function and $\phi(\cdot,t)\in A{\mathop\mathrm{loc}}_{\infty}(\mathbb{R}n)$ (the class of local weights introduced by V. S. Rychkov). In this paper, the authors introduce a local Hardy space $h_{\phi}(\mathbb{R}n)$ of Musielak-Orlicz type by the local grand maximal function, and a local $\mathop\mathrm{BMO}$-type space $\mathop\mathrm{bmo}{\phi}(\mathbb{R}n)$ which is further proved to be the dual space of $h{\phi}(\mathbb{R}n)$. As an application, the authors prove that the class of pointwise multipliers for the local $\mathop\mathrm{BMO}$-type space $\mathop\mathrm{bmo}{\phi}(\mathbb{R}n)$, characterized by E. Nakai and K. Yabuta, is just the dual of $L1(\rn)+h_{\Phi_0}(\mathbb{R}n)$, where $\phi$ is an increasing function on $(0,\infty)$ satisfying some additional growth conditions and $\Phi_0$ a Musielak-Orlicz function induced by $\phi$. Characterizations of $h_{\phi}(\mathbb{R}n)$, including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic characterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of $h_{\phi}(\mathbb{R}n)$, from which, the authors further deduce some criterions for the boundedness on $h_{\phi}(\mathbb{R}n)$ of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on $h_{\phi}(\mathbb{R}n)$.

Summary

We haven't generated a summary for this paper yet.