Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Linear Convergence of Approximate Projections onto Regularized Sets (1108.2243v3)

Published 10 Aug 2011 in math.OC, math-ph, math.MP, and math.NA

Abstract: The numerical properties of algorithms for finding the intersection of sets depend to some extent on the regularity of the sets, but even more importantly on the regularity of the intersection. The alternating projection algorithm of von Neumann has been shown to converge locally at a linear rate dependent on the regularity modulus of the intersection. In many applications, however, the sets in question come from inexact measurements that are matched to idealized models. It is unlikely that any such problems in applications will enjoy metrically regular intersection, let alone set intersection. We explore a regularization strategy that generates an intersection with the desired regularity properties. The regularization, however, can lead to a significant increase in computational complexity. In a further refinement, we investigate and prove linear convergence of an approximate alternating projection algorithm. The analysis provides a regularization strategy that fits naturally with many ill-posed inverse problems, and a mathematically sound stopping criterion for extrapolated, approximate algorithms. The theory is demonstrated on the phase retrieval problem with experimental data. The conventional early termination applied in practice to unregularized, consistent problems in diffraction imaging can be justified fully in the framework of this analysis providing, for the first time, proof of convergence of alternating approximate projections for finite dimensional, consistent phase retrieval problems.

Summary

We haven't generated a summary for this paper yet.