Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flooding Time in Opportunistic Networks under Power Law and Exponential Inter-Contact Times (1107.5241v3)

Published 26 Jul 2011 in cs.SI

Abstract: Performance bounds for opportunistic networks have been derived in a number of papers for several key quantities, such as the expected delivery time of a unicast message, or the flooding time (a measure of how fast information spreads). However, to the best of our knowledge, none of the existing results is derived under a mobility model which is able to reproduce the power law+exponential tail dichotomy of the pairwise node inter-contact time distribution which has been observed in traces of several real opportunistic networks. The contributions of this paper are two-fold: first, we present a simple pairwise contact model -- called the Home-MEG model -- for opportunistic networks based on the observation made in previous work that pairs of nodes in the network tend to meet in very few, selected locations (home locations); this contact model is shown to be able to faithfully reproduce the power law+exponential tail dichotomy of inter-contact time. Second, we use the Home-MEG model to analyze flooding time in opportunistic networks, presenting asymptotic bounds on flooding time that assume different initial conditions for the existence of opportunistic links. Finally, our bounds provide some analytical evidences that the speed of information spreading in opportunistic networks can be much faster than that predicted by simple geometric mobility models.

Citations (22)

Summary

We haven't generated a summary for this paper yet.