Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse approximation property and stable recovery of sparse signals from noisy measurements (1107.5203v1)

Published 26 Jul 2011 in cs.IT and math.IT

Abstract: In this paper, we introduce a sparse approximation property of order $s$ for a measurement matrix ${\bf A}$: $$|{\bf x}_s|_2\le D |{\bf A}{\bf x}|_2+ \beta \frac{\sigma_s({\bf x})}{\sqrt{s}} \quad {\rm for\ all} \ {\bf x},$$ where ${\bf x}_s$ is the best $s$-sparse approximation of the vector ${\bf x}$ in $\ell2$, $\sigma_s({\bf x})$ is the $s$-sparse approximation error of the vector ${\bf x}$ in $\ell1$, and $D$ and $\beta$ are positive constants. The sparse approximation property for a measurement matrix can be thought of as a weaker version of its restricted isometry property and a stronger version of its null space property. In this paper, we show that the sparse approximation property is an appropriate condition on a measurement matrix to consider stable recovery of any compressible signal from its noisy measurements. In particular, we show that any compressible signalcan be stably recovered from its noisy measurements via solving an $\ell1$-minimization problem if the measurement matrix has the sparse approximation property with $\beta\in (0,1)$, and conversely the measurement matrix has the sparse approximation property with $\beta\in (0,\infty)$ if any compressible signal can be stably recovered from its noisy measurements via solving an $\ell1$-minimization problem.

Citations (41)

Summary

We haven't generated a summary for this paper yet.