Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean curvature flow of Lagrangian submanifolds with isolated conical singularities (1107.4803v2)

Published 24 Jul 2011 in math.DG and math.AP

Abstract: In this paper we study the short time existence problem for the (generalized) Lagrangian mean curvature flow in (almost) Calabi--Yau manifolds when the initial Lagrangian submanifold has isolated conical singularities modelled on stable special Lagrangian cones. Given a Lagrangian submanifold $F_0:L\rightarrow M$ in an almost Calabi--Yau manifold $M$ with isolated conical singularities at $x_1,...,x_n\in M$ modelled on stable special Lagrangian cones $C_1,...,C_n$ in $\mathbb{C}m$, we show that for a short time there exist one-parameter families of points $x_1(t),... x_n(t)\in M$ and a one parameter family of Lagrangian submanifolds $F(t,\cdot):L\rightarrow M$ with isolated conical singularities at $x_1(t),...,x_n(t)\in M$ modelled on $C_1,...,C_n$, which evolves by (generalized) Lagrangian mean curvature flow with initial condition $F_0:L\rightarrow M$.

Summary

We haven't generated a summary for this paper yet.